Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 430
Filtrar
1.
J Cell Mol Med ; 28(8): e18307, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613342

RESUMO

Mucopolysaccharidosis type IIIC (MPS IIIC) is one of inherited lysosomal storage disorders, caused by deficiencies in lysosomal hydrolases degrading acidic mucopolysaccharides. The gene responsible for MPS IIIC is HGSNAT, which encodes an enzyme that catalyses the acetylation of the terminal glucosamine residues of heparan sulfate. So far, few studies have focused on the genetic landscape of MPS IIIC in China, where IIIA and IIIB were the major subtypes. In this study, we utilized whole-exome sequencing (WES) to identify novel compound heterozygous variants in the HGSNAT gene from a Chinese patient with typical MPS IIIC symptoms: c.743G>A; p.Gly248Glu and c.1030C>T; p.Arg344Cys. We performed in silico analysis and experimental validation, which confirmed the deleterious pathogenic nature of both variants, as evidenced by the loss of HGSNAT activity and failure of lysosomal localization. To the best of our knowledge, the MPS IIIC is first confirmed by clinical, biochemical and molecular genetic findings in China. Our study thus expands the spectrum of MPS IIIC pathogenic variants, which is of importance to dissect the pathogenesis and to carry out clinical diagnosis of MPS IIIC. Moreover, this study helps to depict the natural history of Chinese MPS IIIC populations.


Assuntos
Mucopolissacaridoses , Mucopolissacaridose III , Humanos , Mucopolissacaridose III/genética , Mucopolissacaridoses/genética , Povo Asiático/genética , Acetilação , China , Acetiltransferases
2.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256186

RESUMO

Mucopolysaccharidoses (MPSs) are a group of inborn errors of the metabolism caused by a deficiency in the lysosomal enzymes required to break down molecules called glycosaminoglycans (GAGs). These GAGs accumulate over time in various tissues and disrupt multiple biological systems, including catabolism of other substances, autophagy, and mitochondrial function. These pathological changes ultimately increase oxidative stress and activate innate immunity and inflammation. We have described the pathophysiology of MPS and activated inflammation in this paper, starting with accumulating the primary storage materials, GAGs. At the initial stage of GAG accumulation, affected tissues/cells are reversibly affected but progress irreversibly to: (1) disruption of substrate degradation with pathogenic changes in lysosomal function, (2) cellular dysfunction, secondary/tertiary accumulation (toxins such as GM2 or GM3 ganglioside, etc.), and inflammatory process, and (3) progressive tissue/organ damage and cell death (e.g., skeletal dysplasia, CNS impairment, etc.). For current and future treatment, several potential treatments for MPS that can penetrate the blood-brain barrier and bone have been proposed and/or are in clinical trials, including targeting peptides and molecular Trojan horses such as monoclonal antibodies attached to enzymes via receptor-mediated transport. Gene therapy trials with AAV, ex vivo LV, and Sleeping Beauty transposon system for MPS are proposed and/or underway as innovative therapeutic options. In addition, possible immunomodulatory reagents that can suppress MPS symptoms have been summarized in this review.


Assuntos
Mucopolissacaridoses , Osteocondrodisplasias , Humanos , Terapias em Estudo , Mucopolissacaridoses/genética , Mucopolissacaridoses/terapia , Anticorpos Monoclonais , Glicosaminoglicanos , Inflamação
3.
Virchows Arch ; 484(1): 135-140, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37787787

RESUMO

Despite the adenoids are regularly removed in patients with mucopolysaccharidoses (MPS), the underlying tissue and cellular pathologies remain understudied. We characterized an (immuno)histopathologic and ultrastructural phenotype dominated by lysosomal storage changes in a specific subset of adenotonsillar paracortical cells in 8 MPS patients (3 MPS I, 3 MPS II, and 2 MPS IIIA). These abnormal cells were effectively detected by an antibody targeting the lysosomal membrane tetraspanin CD63. Important, CD63+ storage vacuoles in these cells lacked the monocytes/macrophages lysosomal marker CD68. Such a distinct patterning of CD63 and CD68 was not present in a patient with infantile neurovisceral variant of acid sphingomyelinase deficiency. The CD63+ storage pathology was absent in two MPS I patients who either received enzyme-replacement therapy or underwent hematopoietic stem cells transplantation prior the adenoidectomy. Our study demonstrates novel features of lysosomal storage patterning and suggests diagnostic utility of CD63 detection in adenotonsillar lymphoid tissue of MPS patients.


Assuntos
Mucopolissacaridoses , Humanos , Mucopolissacaridoses/diagnóstico , Mucopolissacaridoses/tratamento farmacológico , Mucopolissacaridoses/genética , Tecido Linfoide/patologia , Lisossomos , Terapia de Reposição de Enzimas , Tetraspanina 30
4.
J Inherit Metab Dis ; 47(1): 135-144, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37204267

RESUMO

Current specific treatments for mucopolysaccharidoses (MPSs) include enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT). Both treatments are hampered by several limitations, including lack of efficacy on brain and skeletal manifestations, need for lifelong injections, and high costs. Therefore, more effective treatments are needed. Gene therapy in MPSs is aimed at obtaining high levels of the therapeutic enzyme in multiple tissues either by engrafted gene-modified hematopoietic stem progenitor cells (ex vivo) or by direct infusion of a viral vector expressing the therapeutic gene (in vivo). This review focuses on the most recent clinical progress in gene therapies for MPSs. The various gene therapy approaches with their strengths and limitations are discussed.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Mucopolissacaridoses , Humanos , Mucopolissacaridoses/genética , Mucopolissacaridoses/terapia , Encéfalo , Terapia Genética , Terapia de Reposição de Enzimas
5.
Mol Genet Metab ; 140(3): 107685, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37604083

RESUMO

The mucopolysaccharidoses (MPS) are a family of inborn errors of metabolism resulting from a deficiency in a lysosomal hydrolase responsible for the degradation of glycosaminoglycans (GAG). From a biochemical standpoint, excessive urinary excretion of GAG has afforded first-tier laboratory investigations for diagnosis whereas newborn screening programs employ lysosomal hydrolase measurements. Given false positives are not uncommon, second-tier diagnostic testing relies on lysosomal hydrolase measurements following elevated urinary GAG, and newborn screening results are often corroborated with GAG determinations. Molecular genetics requires acknowledgement, as identifying pathogenic variants in the hydrolase genes confirms the diagnosis and allows cascade testing for families, but genetic variants of uncertain significance complicate this paradigm. Initiating cellular, tissue and organ damage that leads to an MPS phenotype is undoubtedly the accumulation of partially degraded GAG, and with mass spectrometry technologies now readily available in the biochemical genetics' laboratory, the ability to properly measure these GAG fragments has been realized. The most common approach involves bacterial lyase/hydrolase digestion of the long chain GAG polymers into their disaccharide units that can be measured by mass spectrometry. Another, less well-known method, the endogenous, non-reducing end method, does not require depolymerization of GAG but rather relies on the mass spectrometric measurement of the naturally produced oligosaccharides that arise from the enzyme deficiency. All MPS can be identified by this one method, and evidence to date shows it to be the only GAG analysis method that gives no false positives when employed as a first-tier laboratory diagnostic test and second-tier newborn screening test.


Assuntos
Glicosaminoglicanos , Mucopolissacaridoses , Recém-Nascido , Humanos , Glicosaminoglicanos/metabolismo , Triagem Neonatal/métodos , Espectrometria de Massas em Tandem/métodos , Mucopolissacaridoses/diagnóstico , Mucopolissacaridoses/genética , Mucopolissacaridoses/metabolismo , Biomarcadores , Hidrolases
6.
J Transl Med ; 21(1): 437, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407981

RESUMO

BACKGROUND: Mucopolysaccharidosis IIIC (MPSIIIC) is one of four Sanfilippo diseases sharing clinical symptoms of severe cognitive decline and shortened lifespan. The missing enzyme, heparan sulfate acetyl-CoA: α-glucosaminide-N-acetyltransferase (HGSNAT), is bound to the lysosomal membrane, therefore cannot cross the blood-brain barrier or diffuse between cells. We previously demonstrated disease correction in MPSIIIC mice using an Adeno-Associated Vector (AAV) delivering HGSNAT via intraparenchymal brain injections using an AAV2 derived AAV-truetype (AAV-TT) serotype with improved distribution over AAV9. METHODS: Here, intraparenchymal AAV was delivered in sheep using catheters or Hamilton syringes, placed using Brainlab cranial navigation for convection enhanced delivery, to reduce proximal vector expression and improve spread. RESULTS: Hamilton syringes gave improved AAV-GFP distribution, despite lower vector doses and titres. AAV-TT-GFP displayed moderately better transduction compared to AAV9-GFP but both serotypes almost exclusively transduced neurons. Functional HGSNAT enzyme was detected in 24-37% of a 140g gyrencephalic sheep brain using AAV9-HGSNAT with three injections in one hemisphere. CONCLUSIONS: Despite variabilities in volume and titre, catheter design may be critical for efficient brain delivery. These data help inform a clinical trial for MPSIIIC.


Assuntos
Mucopolissacaridose III , Animais , Acetiltransferases/genética , Acetiltransferases/metabolismo , Encéfalo , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos , Heparitina Sulfato/metabolismo , Mucopolissacaridoses/genética , Mucopolissacaridoses/terapia , Mucopolissacaridose III/genética , Mucopolissacaridose III/metabolismo , Mucopolissacaridose III/terapia , Ovinos , Terapia Genética
7.
Biochem Biophys Res Commun ; 665: 107-117, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37149983

RESUMO

Although mucopolysaccharidoses (MPS) are monogenic diseases, caused by mutations in genes coding for enzymes involved in degradation of glycosaminoglycans (GAGs), recent studies suggested that changes in expressions of various genes might cause secondary and tertiary cellular dysfunctions modulating the course of these diseases. In this report, we demonstrate that vesicle trafficking regulation is affected in fibroblasts derived from patients suffering from 11 different types of MPS due to changes in levels of crucial proteins (estimated by automated Western-blotting) involved in this process, including caveolin, clathrin, huntingtin (Htt), APPL1, EEA1, GOPC, Rab5, and Rab7. Microscopic studies confirmed these results, while investigations of tissue samples derived from the MPS I mouse model indicated differences between various organs in this matter. Moreover, transcriptomic analyses provided a global picture for changes in expressions of genes related to vesicle trafficking in MPS cells. We conclude that vesicle trafficking is dysregulated in MPS cells and changes in this process might contribute to the molecular mechanisms of this disease. Most probably, primary GAG storage might cause a cellular stress response leading to dysregulation of expression of many genes which, in turn, results in changes in cellular processes like vesicle trafficking. This can significantly modulate the course of the disease due to enhancing accumulation of GAGs and altering crucial cellular processes. This hypothesis has been supported by normalization of levels of clathrin in MPS cells treated with either an active form of the deficient GAG-degrading enzyme or a compound (5,7-dihydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) indirectly reducing the efficiency of GAG synthesis.


Assuntos
Mucopolissacaridoses , Camundongos , Animais , Linhagem Celular , Mucopolissacaridoses/genética , Mucopolissacaridoses/tratamento farmacológico , Mucopolissacaridoses/metabolismo , Glicosaminoglicanos/metabolismo , Proteínas da Matriz do Complexo de Golgi/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
8.
Metab Brain Dis ; 38(6): 2133-2144, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37195412

RESUMO

Mucopolysaccharidoses (MPS) are a group of lysosomal storage diseases (LSD) caused by mutations in genes coding for enzymes responsible for degradation of glycosaminoglycans (GAGs). Most types of these severe disorders are characterized by neuronopathic phenotypes. Although lysosomal accumulation of GAGs is the primary metabolic defect in MPS, secondary alterations in biochemical processes are considerable and influence the course of the disease. Early hypothesis suggested that these secondary changes might be due to lysosomal storage-mediated impairment of activities of other enzymes, and subsequent accumulation of various compounds in cells. However, recent studies indicated that expression of hundreds of genes is changed in MPS cells. Therefore, we asked whether metabolic effects observed in MPS are caused primarily by GAG-mediated inhibition of specific biochemical reactions or appear as results of dysregulation of expression of genes coding for proteins involved in metabolic processes. Transcriptomic analyses of 11 types of MPS (using RNA isolated from patient-derived fibroblasts), performed in this study, showed that a battery of the above mentioned genes is dysregulated in MPS cells. Some biochemical pathways might be especially affected by changes in expression of many genes, including GAG metabolism and sphingolipid metabolism which is especially interesting as secondary accumulation of various sphingolipids is one of the best known additional (while significantly enhancing neuropathological effects) metabolic defects in MPS. We conclude that severe metabolic disturbances, observed in MPS cells, can partially arise from changes in the expression of many genes coding for proteins involved in metabolic processes.


Assuntos
Mucopolissacaridoses , Transcriptoma , Humanos , Transcriptoma/genética , Mucopolissacaridoses/genética , Mucopolissacaridoses/patologia , Glicosaminoglicanos/genética , Glicosaminoglicanos/metabolismo , Linhagem Celular , Lisossomos/metabolismo
9.
Biomolecules ; 13(3)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36979466

RESUMO

Impaired glycosaminoglycans (GAGs) catabolism may lead to a cluster of rare metabolic and genetic disorders called mucopolysaccharidoses (MPSs). Each subtype is caused by the deficiency of one of the lysosomal hydrolases normally degrading GAGs. Affected tissues accumulate undegraded GAGs in cell lysosomes and in the extracellular matrix, thus leading to the MPS complex clinical phenotype. Although each MPS may present with recognizable signs and symptoms, these may often overlap between subtypes, rendering the diagnosis difficult and delayed. Here, we performed an exploratory analysis to develop a model that predicts MPS subtypes based on UHPLC-MS/MS measurement of a urine free GAG profile (or GAGome). We analyzed the GAGome of 78 subjects (38 MPS, 37 healthy and 3 with other MPS symptom-overlapping disorders) using a standardized kit in a central-blinded laboratory. We observed several MPS subtype-specific GAGome changes. We developed a multivariable penalized Lasso logistic regression model that attained 91.2% balanced accuracy to distinguish MPS type II vs. III vs. any other subtype vs. not MPS, with sensitivity and specificity ranging from 73.3% to 91.7% and from 98.4% to 100%, depending on the predicted subtype. In conclusion, the urine GAGome was revealed to be useful in accurately discriminating the different MPS subtypes with a single UHPLC-MS/MS run and could serve as a reliable diagnostic test for a more rapid MPS biochemical diagnosis.


Assuntos
Glicosaminoglicanos , Mucopolissacaridoses , Humanos , Espectrometria de Massas em Tandem , Diagnóstico Diferencial , Mucopolissacaridoses/diagnóstico , Mucopolissacaridoses/genética , Mucopolissacaridoses/metabolismo , Hidrolases/genética
10.
Adv Drug Deliv Rev ; 191: 114616, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36356930

RESUMO

Lysosomal storage disorders are a group of progressive multisystemic hereditary diseases with a combined incidence of 1:4,800. Here we review the clinical and molecular characteristics of these diseases, with a special focus on Mucopolysaccharidoses, caused primarily by the lysosomal storage of glycosaminoglycans. Different gene editing techniques can be used to ameliorate their symptoms, using both viral and nonviral delivery methods. Whereas these are still being tested in animal models, early results of phase I/II clinical trials of gene therapy show how this technology may impact the future treatment of these diseases. Hurdles related to specific hard-to-reach organs, such as the central nervous system, heart, joints, and the eye must be tackled. Finally, the regulatory framework necessary to advance into clinical practice is also discussed.


Assuntos
Doenças por Armazenamento dos Lisossomos , Mucopolissacaridoses , Animais , Edição de Genes , Mucopolissacaridoses/genética , Mucopolissacaridoses/terapia , Mucopolissacaridoses/diagnóstico , Doenças por Armazenamento dos Lisossomos/terapia , Doenças por Armazenamento dos Lisossomos/tratamento farmacológico , Terapia de Reposição de Enzimas/métodos , Lisossomos
11.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36232726

RESUMO

Eleven patients from Yakutia with a new lysosomal disease assumed then as mucopolysaccharidosis-plus syndrome (MPS-PS) were reported by Gurinova et al. in 2014. Up to now, a total number of 39 patients have been reported; in all of them, the c.1492C>T (p.Arg498Trp) variant of the VPS33A gene was detected. Here, we describe the first Polish MPS-PS patient with a novel homozygous c.599G>C (p.Arg200Pro) VPS33A variant presenting over 12 years of follow-up with some novel clinical features, including fetal ascites (resolved spontaneously), recurrent joint effusion and peripheral edemas, normal growth, and visceral obesity. Functional analyses revealed a slight presence of chondroitin sulphate (only) in urine glycosaminoglycan electrophoresis, presence of sialooligosaccharides in urine by thin-layer chromatography, and normal results of lysosomal enzymes activity and lysosphingolipids concentration in dried blood spot. The comparison with other MPS-PS described cases was also provided. The presented description of the natural history of MPS-PS in our patient may broaden the spectrum of phenotypes in this disease.


Assuntos
Mucopolissacaridoses , Proteínas de Transporte Vesicular , Sulfatos de Condroitina/urina , Glicosaminoglicanos/urina , Humanos , Mucopolissacaridoses/sangue , Mucopolissacaridoses/diagnóstico , Mucopolissacaridoses/genética , Mucopolissacaridoses/urina , Mutação , Polônia , Esfingolipídeos/sangue , Proteínas de Transporte Vesicular/genética
12.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077388

RESUMO

Mucopolysaccharidosis (MPS) is a lysosomal storage disease caused by genetic defects that result in deficiency of one specific enzyme activity, consequently impairing the stepwise degradation of glycosaminoglycans (GAGs). Except for MPS II, the other types of MPS have autosomal recessive inheritance in which two copies of an abnormal allele must be present in order for the disease to develop. In this study, we present the status of variant alleles and biochemistry results found in infants suspected of having MPS I, II, IVA, and VI. A total of 324 suspected infants, including 12 for MPS I, 223 for MPS II, 72 for MPS IVA, and 17 for MPS VI, who were referred for MPS confirmation from newborn screening centers in Taiwan, were enrolled. In all of these infants, one specific enzyme activity in dried blood spot filter paper was lower than the cut-off value in the first blood sample, as well asin a second follow-up sample. The confirmatory methods used in this study included Sanger sequencing, next-generation sequencing, leukocyte enzyme fluorometric assay, and GAG-derived disaccharides in urine using tandem mass spectrometry assays. The results showed that five, nine, and six infants had MPS I, II, and IVA, respectively, and all of them were asymptomatic. Thus, a laboratory diagnosis is extremely important to confirm the diagnosis of MPS. The other infants with identified nucleotide variations and reductions in leukocyte enzyme activities were categorized as being highly suspected cases requiring long-term and intensive follow-up examinations. In summary, the final confirmation of MPS depends on the most powerful biomarkers found in urine, i.e., the quantification of GAG-derived disaccharides including dermatan sulfate, heparan sulfate, and keratan sulfate, and analysis of genetic variants can help predict outcomes and guide treatment.


Assuntos
Mucopolissacaridoses , Mucopolissacaridose II , Mucopolissacaridose I , Dissacarídeos , Glicosaminoglicanos/genética , Humanos , Lactente , Recém-Nascido , Mucopolissacaridoses/diagnóstico , Mucopolissacaridoses/genética , Espectrometria de Massas em Tandem/métodos
13.
Sci Rep ; 12(1): 15045, 2022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-36057729

RESUMO

Mucopolysaccharidosis IV A (MPS IVA) is a lysosomal disorder caused by mutations in the GALNS gene. Consequently, the glycosaminoglycans (GAGs) keratan sulfate and chondroitin 6-sulfate accumulate in the lysosomal lumen. Although enzyme replacement therapy has shown essential advantages for the patients, several challenges remain to overcome, such as the limited impact on the bone lesion and recovery of oxidative profile. Recently, we validated a CRISPR/nCas9-based gene therapy with promising results in an in vitro MPS IVA model. In this study, we have expanded the use of this CRISPR/nCas9 system to several MPS IVA fibroblasts carrying different GALNS mutations. Considering the latent need to develop more safety vectors for gene therapy, we co-delivered the CRISPR/nCas9 system with a novel non-viral vector based on magnetoliposomes (MLPs). We found that the CRISPR/nCas9 treatment led to an increase in enzyme activity between 5 and 88% of wild-type levels, as well as a reduction in GAGs accumulation, lysosomal mass, and mitochondrial-dependent oxidative stress, in a mutation-dependent manner. Noteworthy, MLPs allowed to obtain similar results to those observed with the conventional transfection agent lipofectamine. Overall, these results confirmed the potential of CRISPR/nCas9 as a genome editing tool for treating MPS IVA. We also demonstrated the potential use of MLPs as a novel delivery system for CRISPR/nCas9-based therapies.


Assuntos
Condroitina Sulfatases , Mucopolissacaridoses , Mucopolissacaridose IV , Nanopartículas , Condroitina Sulfatases/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Óxido Ferroso-Férrico/uso terapêutico , Edição de Genes , Glicosaminoglicanos , Humanos , Mucopolissacaridoses/genética , Mucopolissacaridoses/terapia , Mucopolissacaridose IV/genética , Mucopolissacaridose IV/terapia
14.
Exp Biol Med (Maywood) ; 247(18): 1639-1649, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36000158

RESUMO

Mucopolysaccharidoses (MPS) are a group of lysosomal storage diseases caused by defects in genes coding for proteins involved in degradation of glycosaminoglycans (GAGs). These complex carbohydrates accumulate in cells causing their serious dysfunctions. Apart from the physical GAG storage, secondary and tertiary changes may contribute significantly to the pathomechanism of the disease. Among processes which were not systematically investigated in MPS cells to date there is the cell cycle. Here, we studied perturbances in this crucial cellular process in majority of MPS types. Transcriptomic analyses indicated that expression of many genes coding for proteins involved in the cell cycle is dysregulated in all tested MPS cells. Importantly, levels of transcripts of particular genes were changed in the same manner (i.e. either up- or down-regulated) in most or all types of the disease, indicating a common mechanism of the dysregulation. Flow cytometric studies demonstrated that the cell cycle is disturbed in all MPS types, with increased fractions of cells in the G0/G1 phase in most types and decreased fractions of cells in the G2/M phase in all types. We found that increased levels of cyclin D1 and disturbed timing of its appearance during the cell cycle may contribute to the mechanism of dysregulation of this process in MPS. Reduction of GAG levels by either a specific enzyme or genistein-mediated inhibition of synthesis of these compounds improved, but not fully corrected, the cell cycle in MPS fibroblasts. Therefore, it is suggested that combination of the therapeutic approaches devoted to reduction of GAG levels with cyclin D1 inhibitors might be considered in further works on developing effective treatment procedures for MPS.


Assuntos
Genisteína , Mucopolissacaridoses , Humanos , Genisteína/farmacologia , Genisteína/uso terapêutico , Ciclina D1/metabolismo , Transcriptoma/genética , Linhagem Celular , Mucopolissacaridoses/genética , Mucopolissacaridoses/metabolismo , Mucopolissacaridoses/terapia , Glicosaminoglicanos , Ciclo Celular/genética , Divisão Celular
15.
Hematol Oncol Clin North Am ; 36(4): 865-878, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35773049

RESUMO

Enzyme replacement therapy (ERT) and allogeneic hematopoietic stem cell transplantation (HSCT) are standard treatments for some mucopolysaccharidoses. Nevertheless, ERT is not curative, and HSCT is associated with significant mortality and morbidity, leaving a substantial disease burden of brain and skeletal manifestations. To overcome these limitations, different gene therapy (GT) strategies are under preclinical and clinical development. Data from ex-vivo GT clinical trials have demonstrated encouraging biochemical and early clinical outcomes. In-vivo GT, based on local brain delivery or systemic intravenous injections, resulted in biochemical and clinical stabilization of the disease.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Mucopolissacaridoses , Efeitos Psicossociais da Doença , Terapia de Reposição de Enzimas/métodos , Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Mucopolissacaridoses/complicações , Mucopolissacaridoses/genética , Mucopolissacaridoses/terapia
16.
Int J Mol Sci ; 23(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35628659

RESUMO

Mucopolysaccharidoses (MPS) are rare lysosomal storage disorders (LSD) characterized by the excessive accumulation of glycosaminoglycans (GAG). Conventional MPS, caused by inborn deficiencies of lysosomal enzymes involved in GAG degradation, display various multisystemic symptoms-including progressive neurological complications, ophthalmological disorders, hearing loss, gastrointestinal and hepatobiliary issues, cardiorespiratory problems, bone and joint abnormalities, dwarfism, and coarse facial features. Mucopolysaccharidosis-Plus Syndrome (MPSPS), an autosomal recessive disease caused by a mutation in the endo-lysosomal tethering protein VPS33A, shows additional renal and hematopoietic abnormalities ("Plus symptoms") uncommon in conventional MPS. Here, we analyze data from biochemical, histological, and physical examinations-particularly of blood counts and kidney function-to further characterize the clinical phenotype of MPSPS. A series of blood tests indicate hematopoietic symptoms including progressive anemia and thrombocytopenia, which correlate with histological observations of hypoplastic bone marrow. High urinary excretion of protein (caused by impairments in renal filtration), hypoalbuminemia, and elevated levels of creatinine, cholesterol, and uric acid indicate renal dysfunction. Histological analyses of MPSPS kidneys similarly suggest the extensive destruction of glomerular structures by foamy podocytes. Height and weight did not significantly deviate from the average, but in some cases, growth began to decline at around six months or one year of age.


Assuntos
Oftalmopatias , Doenças Hematológicas , Mucopolissacaridoses , Glicosaminoglicanos/metabolismo , Doenças Hematológicas/complicações , Humanos , Mucopolissacaridoses/genética , Mutação
17.
Genes (Basel) ; 13(4)2022 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-35456399

RESUMO

Monogenic diseases are primarily caused by mutations in a single gene; thus, they are commonly recognized as genetic disorders with the simplest mechanisms. However, recent studies have indicated that the molecular mechanisms of monogenic diseases can be unexpectedly complicated, and their understanding requires complex studies at the molecular level. Previously, we have demonstrated that in mucopolysaccharidoses (MPS), a group of monogenic lysosomal storage diseases, several hundreds of genes reveal significant changes in the expression of various genes. Although the secondary effects of the primary biochemical defect and the inefficient degradation of glycosaminoglycans (GAGs) might be considered, the scale of the changes in the expression of a large fraction of genes cannot be explained by a block in one biochemical pathway. Here, we demonstrate that in cellular models of 11 types of MPS, the expression of genes coding for proteins involved in the regulation of the expression of many other genes at various stages (such as signal transduction, transcription, splicing, RNA degradation, translation, and others) is significantly disturbed relative to the control cells. This conclusion was based on transcriptomic studies, supported by biochemical analyses of levels of selected proteins encoded by genes revealing an especially high level of dysregulation in MPS (EXOSC9, SRSF10, RPL23, and NOTCH3 proteins were investigated). Interestingly, the reduction in GAGs levels, through the inhibition of their synthesis normalized the amounts of EXOSC9, RPL23, and NOTCH3 in some (but not all) MPS types, while the levels of SRSF10 could not be corrected in this way. These results indicate that different mechanisms are involved in the dysregulation of the expression of various genes in MPS, pointing to a potential explanation for the inability of some therapies (such as enzyme replacement therapy or substrate reduction therapy) to fully correct the physiology of MPS patients. We suggest that the disturbed expression of some genes, which appears as secondary or tertiary effects of GAG storage, might not be reversible, even after a reduction in the amounts of the storage material.


Assuntos
Doenças por Armazenamento dos Lisossomos , Mucopolissacaridoses , Proteínas de Ciclo Celular/genética , Regulação da Expressão Gênica/genética , Glicosaminoglicanos/genética , Glicosaminoglicanos/metabolismo , Humanos , Mucopolissacaridoses/genética , Mucopolissacaridoses/metabolismo , Proteínas Repressoras/genética , Fatores de Processamento de Serina-Arginina/genética , Transcriptoma
18.
Genes (Basel) ; 13(3)2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35327996

RESUMO

Mucopolysaccharidosis-plus syndrome (MPS-PS) is a novel autosomal recessive disorder caused by a mutation in the VPS33A gene. This syndrome presents with typical symptoms of mucopolysaccharidosis, as well as congenital heart defects, renal, and hematopoietic system disorders. To date, twenty-four patients have been described. There is no specific therapy for MPS-PS; clinical management is therefore limited to symptoms management. The clinical course is rapidly progressive, and most patients die before 1-2 years of age. We describe a currently 6-year-old male patient with MPS-PS presenting with multiorgan involvement. Symptoms started at four months of age when he progressively suffered from numerous acute and potentially life-threatening events. When he was two years old, he developed secondary hemophagocytic lymphohistiocytosis (HLH), which was successfully treated with steroids. To date, this child represents the oldest patient affected by MPS-PS described in the literature and the first one presenting with a life-threatening secondary HLH. The prolonged steroid treatment allowed a stabilization of his general and hematological conditions and probably determined an improvement of his psychomotor milestones and new neurological acquisitions with an improvement of quality of life. HLH should be suspected and adequately treated in MPS-PS patients presenting with suggestive symptoms of the disease. The usefulness of a prolonged steroid treatment to improve the clinical course of children with MPS-PS deserves further investigation.


Assuntos
Linfo-Histiocitose Hemofagocítica , Mucopolissacaridoses , Criança , Pré-Escolar , Humanos , Linfo-Histiocitose Hemofagocítica/diagnóstico , Linfo-Histiocitose Hemofagocítica/tratamento farmacológico , Linfo-Histiocitose Hemofagocítica/genética , Masculino , Mucopolissacaridoses/genética , Qualidade de Vida , Esteroides , Síndrome
19.
J Appl Genet ; 63(2): 361-368, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35322332

RESUMO

Rare disease datasets are typically structured such that a small number of patients (cases) are represented by multidimensional feature vectors. In this report, we considered a rare disease, mucopolysaccharidosis (MPS). This disease is divided into 11 types and subtypes, depending on the genetic defect, type of deficient enzyme, and nature of accumulated glycosaminoglycan(s). Among them, 7 types are known as possibly neuronopathic and 4 are non-neuronopathic, and in the case of the former group, prediction of the course of the disease is crucial for patient's treatment and the management. Here, we have used transcriptomic data available for one patient from each MPS type/subtype. The approach to gene grouping considered by us was based on the minimization of the perceptron criterion in the form of convex and piecewise linear function (CPL). This approach allows designing complexes of linear classifiers on the basis of small samples of multivariate vectors. As a result, distinguishing neuronopathic and non-neuronopathic forms of MPS was possible on the basis of bioinformatic analysis of gene expression patterns where each MPS type was represented by only one patient. This approach can be potentially used also for assessing other features of patients suffering from rare diseases, for which large body of data (like transcriptomic data) is available from only one or a few representatives.


Assuntos
Mucopolissacaridoses , Doenças Raras , Análise por Conglomerados , Humanos , Mucopolissacaridoses/genética , Transcriptoma/genética
20.
Hum Mutat ; 43(4): e1-e23, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35005816

RESUMO

Mucopolysaccharidoses (MPSs) are rare, heterogeneous inborn errors of metabolism (IEM) diagnosed through a combination of clinical, biochemical, and genetic investigations. The aim of this study was molecular characterization of the largest cohort of Iranian MPS patients (302 patients from 289 unrelated families), along with tracking their ethnicity and geographical origins. 185/289 patients were studied using an IEM-targeted NGS panel followed by complementary Sanger sequencing, which led to the diagnosis of 154 MPS patients and 5 non-MPS IEMs (diagnostic yield: 85.9%). Furthermore, 106/289 patients who were referred with positive findings went through reanalysis and confirmatory tests which confirmed MPS diagnosis in 104. Among the total of 258 MPS patients, 225 were homozygous, 90 harbored novel variants, and 9 had copy number variations. MPS IV was the most common type (34.8%) followed by MPS I (22.7%) and MPS VI (22.5%). Geographical origin analysis unveiled a pattern of distribution for frequent variants in ARSB (c.430G>A, c.962T>C [p.Leu321Pro], c.281C>A [p.Ser94*]), GALNS (c.319G>A [p.Ala107Thr], c.860C>T [p.Ser287Leu], c.1042A>G [p.Thr348Ala]), and IDUA (c.1A>C [p.Met1Leu], c.1598C>G [p.Pro533Arg], c.1562_1563insC [p.Gly522Argfs*50]). Our extensive patient cohort reveals the genetic and geographic landscape of MPS in Iran, which provides insight into genetic epidemiology of MPS and can facilitate a more cost-effective, time-efficient diagnostic approach based on the region-specific variants.


Assuntos
Condroitina Sulfatases , Mucopolissacaridoses , Mucopolissacaridose I , Mucopolissacaridose VI , Condroitina Sulfatases/genética , Variações do Número de Cópias de DNA , Humanos , Irã (Geográfico)/epidemiologia , Mucopolissacaridoses/diagnóstico , Mucopolissacaridoses/genética , Mucopolissacaridose I/diagnóstico , Mucopolissacaridose I/epidemiologia , Mucopolissacaridose I/genética , Mucopolissacaridose VI/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...